Two neural network methods for multidimensional scaling

نویسندگان

  • Michiel C. van Wezel
  • Joost N. Kok
  • Walter A. Kosters
چکیده

Multidimensional scaling (MDS) embeds points in a Euclidean space given only dissimilarity data. Only very recently MDS has gotten some attention from neural network researchers. We propose two neural network methods for MDS and evaluate them using both artiicially generated and real data. Training uses two inputs at a time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methods for Binary Multidimensional Scaling

Multidimensional scaling (MDS) is the process of transforming a set of points in a high-dimensional space to a lower-dimensional one while preserving the relative distances between pairs of points. Although effective methods have been developed for solving a variety of MDS problems, they mainly depend on the vectors in the lower-dimensional space having real-valued components. For some applicat...

متن کامل

Nonmetric multidimensional scaling: Neural networks versus traditional techniques

In this paper we consider various methods for nonmetric multidimensional scaling. We focus on the nonmetric phase, for which we consider various alternatives: Kruskal’s nonmetric phase, Guttman’s nonmetric phase, monotone regression by monotone splines, and monotone regression by a monotone neural network. All methods are briefly described. We use sequential quadratic programming to estimate th...

متن کامل

Using Multidimensional Scaling for Assessment Economic Development of Regions

Addressing socio-economic development issues are strategic and most important for any country. Multidimensional statistical analysis methods, including comprehensive index assessment, have been successfully used to address this challenge, but they donchr('39')t cover all aspects of development, leaving some gap in the development of multidimensional metrics. The purpose of the study is to const...

متن کامل

Improved Multidimensional Scaling Analysis Using Neural Networks with Distance-Error Backpropagation

We show that neural networks, with a suitable error function for backpropagation, can be successfully used for metric multidimensional scaling (MDS) (i.e., dimensional reduction while trying to preserve the original distances between patterns) and are in fact able to outdo the standard algebraic approach to MDS, known as classical scaling.

متن کامل

Comparison of Neural Network and Genetic Algorithms for a Resource Allocation Problem

We compare neural network and genetic algorithm solutions of a resource allocation problem and discuss the relative asymptotic scaling of the two approaches in terms of time and space complexity. We show that for this problem neural networks and genetic algorithms perform similarly.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997